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EFFICIENT REORIENTATION OF A DEFORMABLE BODY IN
SPACE: A FREE-FREE BEAM EXAMPLE
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Abstract In this paper we extend the aforementioned reorien-

tation strategies to the case of flexible bodies. In
particular. we are interested in a planar reorientation
of a free—free beam in space using only electrome-
chanical actuators. These electromechanical actua-
tors, e.g. piezoelectric or shape memory actuators.
do not change the angular momentum of the free-
free beam but can be used to change the shape of the
beam in a periodic way. Assuming that the angular
momentum of the beam is always zero, oscillations
in the shape of the beam can cause a rotation of the
beam with respect to a fixed inertial reference. The
rotation of the beam over one period depends only on

[t is demonstrated that the planar reorientation of
a free—free beam in zero gravity space can he ac-
complished by periodically changing the shape of the
beam using internal actuators. A control scheme is
proposed in which electromechanical actuators excite
the flexible motion of the beam so that it rotates in
the desired manner with respect to a fixed inertial
reference. The results can be viewed as an extension
of previous work to a distributed parameter case.

1. Introduction the shape of the beam over one period and does not
depend on the len th of the period; hence this phe-
Following [8], we introduce the concept of a de- nomenon is referred to as a geometric phase change.

formable body, for which distances between the points
of the body can change during the motion. Ex-
amples of deformable bodies include both lumped
and distributed parameter systems such as multiﬁnk
rigid body interconnections and structures with dis-
tributed flexibility. The orientation of a deformable
body with respect to a fixed inertial reference can be

specified by a choice of body frame. In general, there

The extension of existing strategies to the free—free
beam case is not straightforward for several reasons.
('lassical models of uniform free—free flexible beams
in zero gravity space result in complete decoupling
of rigid body motion and flexible motion. Higher

order nonlinear coupling between rigid body motion
and flexible motion 1s captured in geometrically exact

are many ways to choose a body frame. For exam- beam theories [9]. The resulting models, however. are
le. in the case of planar motion a body frame can be complicated. The free—free beam is an infinite dimen-
tdentified with any two distinct points in the body. sional superarticulated system. Thus, an arbitrary
The shape of a deformable body can be specified in shape change cannot be produced by a finite number
terms of the position of the body relative to the body of actuators, In addition, the body frame of the beam
frame. Thus, an arbitrary motion of a deformable needs to be chosen so that the shape change is inde-
body can be separated into rigid body motion and ‘)endem of the rigid body motion. Such a choice of
shape change. sody frame is natural for lumped parameter systems

since variables specifying orientation are ignorable.

Assume that both linear and angular momenta about [n this paper, we first address basic modeling is-
the center of mass of the body are conserved and sues. The dynamics which determine the shape of
equal to zero. These conditions hold if the body is the free—free beam are assumed to be characterize:
in a circular orbit around the Earth or is in a free by the Euler-Bernoulli equation, including material
fall. As a consequence of angular momentum conser- damping, with ap ropriate boundary conditions. The
vation, shape change and the rigid body motion are higher order coupling between the rigid body motion
coupled. This coupling 1s inherently nonlinear. In and the flexible motion is captured using the angular

poatienlar ane mayhe ipterested in inducing a ro- momentum expression whic includes rotatory iner-
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frame with its origin fixed at the origin of the iner-
tial frame such that the vectors (i. &) lie in the plane
(f1,¢3) and j = é2. The straight line passing through
the origin tn the direction of vector & is called the
reference line. Let the beam initially be at rest in a
straight line configuration aligned with the reference
line. Then, the location of each point on the line of
mass centroids of the beam can be described in terms
of the parameter s € (~L. L], This parameter s can
be viewed as a label for each of rhe crossections. We
assume that as the beam deforms the shape and the
area of the crossections remain invariant. Following
other researchers [1. 6, 9] we introduce three func-
tions u(s.t). y(s.t) : [=L. L] x R — R and vis.¢) :
[=L,L] x R — T' such that (u(s.{)+ s.y(s.t)) de-
fine the coordinates of the line of centroids in the
deformed configuration with respect to the moving
frame (i. k) at time ¢. The angle v (s ¢} between the
normal to the crossection at s and ¢3 specifies the
orientation of the crossection. The normal to the
crossection at s is denoted by 3. We define the mate-
rial basis (1. {,, f3) to be orthonormal so that £ lies in
the plane (€,,é3). The crossection itself can be asso-
ciated with the set of points (£;,&;) in a compact set
A C R? such that €6, + &80+ (uls. t)+5)k +(yls.t))

ives the location of any point on the beam as £, and
?2 vary through A and s varies from —L to L.

Since the origin of the inertial frame is fixed at the
center of mass of the beam we obtain

L
/y(s.t)ds:(). (1)
-L

L
/ u(s,t)ds = 0. (2)
-L

Let p denote the constant mass density per unit vol-
ume of the beam. We assume that the beam has a
symmetric crossection so that the first moment of in-
ertia of the crossection about the line of centroids is

/pfldsldez — 0. 3)
Ja

The second moment of inertia of the crossection about
the line of centroids. referred to as the rotatory iner-
tia, 1s

Iy :/peﬁdeldez. (4)
A

and assumed to be positive. The mass per unit length
of the crossection i1s given by

O
=

mo = / pdé, ds. (
A

We define the angle 8(¢) between ¢3 and k so that
y(s.t) measured from the reference line satisfies the
following orthogonality condition

L
/ sy(s. t)yds = 0. (6)
-L

The existence of the angle 8(¢) follows from the ge-
ometry indicated in Fig. 1. This definition provides a

separation between the motion which determines the
shape of the beany, given by y(s.¢). —=f < s < [ and
the rotation of the beam as a whole. given by it
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Fig . Planar Beam Model

We next develop a kinematically exact expression for
the angular momentum of the free—free beam. Let
F(5.61,82.0,t) be the vector from the origin of the
tnertial frame to a point (s,£;,£2) on the beam at
time t; then

P =(ssinf + ycos@ + & cosy + usinb)é; +
(E2)€2 + (scosf — & siny — ysinf + ucosB)éz (7)

where 8 = 8(¢t),y = y(s,t) and v = v(s,t). The
angular momentum about the origin of the inertial
frame at time ¢ is zero so that

L ,
/ / PP x dﬁ(l{;d{gdé‘:(). %)
i Ja dt

Substituting equation (7) into equation (8) and using

equations (4) and (5) we can express 8 in terms of
y.u and « as

~L 4 . ; g
g j_L{mgs;—;’fﬂ-[g(t%-ﬂlg(%%u—%y)}ds !
= | }
f_LL{—mos2 - moy? — [}ds

where a = 4 — 8 is the angle between the normal /
to the crossection at s and the reference line.

Assume that the beam is unshearable and inextensi-
ble and that the deformations are small. This implies

using equation {2), that
u(s, t) = 0. Pl
and that
R Y, (1l

We use the Euler-Bernoulli beam model to chara--
terize the shape of the beam {3]. Thus y(s, ¢) satisti~
the Euler-Bernoulli equation of the form

m

7”0yn+7ytuu+51ynn = - Zvj(t)él(s_sj ) ol
j=1






non-straight line reference configuration. It follows
from expression (18) that in order to rotate the beam
in the opposite direction it is sufficient to reverse the
signs of vy and v?.

We are now in a position to formulate a specific con-
trol strategy to accomplish the desired asymptotic
maneuver. Starting at rest with A(¢,) = # applica-
tion of control law (19) results in a nonzero geometric
phase change over one period. By repetition of cveles
of motion as many times as necessary the beam can
be caused to rotate closer and closer 1o 4. As A(H)
approach 84 we can reduce the amplitude of the oscil-
lations to zero in a way so that 8(#) — A, as t — ~

The proposed control law is of the form

vi{t) = <% [E‘f + &y cos(.ct)] J =1 meo 2
where 2E=LTp <t-ty < i:ﬂ k= 1.2.... rthat

is. the control excitation is an amplitude modulated
function, where ¢, 5% are constants and < denotes
the scalar amplitude modulation sequence that de-
fines the control excitation on the k-th cvcle. Each
cycle is exactly p periods. The constants . L;J vy can
be chosen nearly arbitrary, although one approach is
to choose ﬁ?, Uy to maximize geometric phase expres-
sion (22) where a;, {;, ¢;,1 = 1,.... are related to i"f,

vy = 1., m according to expressions (20) and

(JIT). and 6;’, Uy are constrained in norm. In terms
of E?, 0¢.j = 1,...,m this is a constrained mathe-
matical programming problem which is linear in Lf
(for fixed 7}) and quadratic in o} (for fixed t}). We
will subsequently denote the maximum value of this
constrained optimization problem as A8~

The modulation sequence 4, is defined in terms of
an average of 0(t). over the k-th cycle. that is

B = .l(max@(f)‘*mmg(”) (24)

wtzer» the maximum and minimum are over
'_7 -_.1 RIS y .

LT < — 4y < T2 We also introduce two
auxilary variables #3*" = 8, and ¢y = sign (gﬁiﬂ)
We express < 1n terms of 83%¢ and €¢_, as indicated
below:

(A1) Compute

()
=3 )

(A2) In case |rg| > |ge-1l, f 7 and c4_; have
the same signs then £ = |ep_sign{re); if
re and cg_; have opposite signs then z =
Y |€k -1 [sign(re). where 0 < ¥, < |.

(A3) If 0 < |re] <
0<y2 <1

(A4) If re =0 then 24 = Sh-1-

ce_1| then £4 = 52rg, where

Proposition 4.2 If the proposed control law i<
of the furm (23) where 24 is selected according 1,
steps {Al)-(A4). then

lim 88¥C =84 hm =, =)
£ — k—

Sketch of the Proof. The sequence !z] i non -
increasing and bounded on [0, 1]. Therefore. there
exists b = [0, 1] such that b = inf, le.{ 1t can be

shown that by construction of the sequence b st
be zero.

Since 2¢] — U then ¢;(t) — O and ¢, — 0 as t — ~

By continuity 9(¢) — 8°°" for some constant # " i~
t — x. It can be shown that #°°" = §,.

Finally. it follows from equations (24) and (20) that

y(s. t)

t—

):o,-LgsgL

The controller which we have constructed has two
functions. Its main function is to excite the oscil-
lations of the beam in such a way that the beam
rotates in the desired sense. Subsequently, the con-
troller serves to suppress the vibrations previously ex-
cited so that the free~free beam comes to rest with a
desired orientation. Note that control law (23) is a

non-stooth feedback control law [2].
4. Numerical Example

Consider a beam with half-length L = 1{m]. den-
sity per unit volume p = 1400{kg/m?] and square
crossection with the side size R = 0.1[m]. Young s
modulus of the beam is £ = 3.0 x 105[V/m?] and
the Kelvin-Voigt damping coefficient is v = 0.2. Tw.,
actuators are installed near both ends of the beam
at s; = =0.9[m] and s2 = 0.9[m]. The maximl
torque each of the actuators can produce is equal *
LOO[Vn]. The excitation frequency w = [3[H : ix <
lected to lie between the first 10.6[H z] and the secon

29[H =] resonant frequencies of the beam; &) and

J = 1.2 are chosen using expression (22) to maxinunz~
the geometric phase change over one period. For tiu-
example we choose p = 5 and v; = v = 0.9. Th«
first four elastic modes of the beamn are used in nr
simulation.

We want to rotate the beam from 8y = 0.1[rad] v
t = Q[sec] to 84 = O[rad]. The dependence of rhr
angle §(t)[rad] on time t[sec] ts shown for a part .t
the maneuver in Fig. 2. In this case the geometrn
phase change over one period in steady-state pre-

dicted by expression (22) is equal to ~2.7465 x [y~*
[rad] whereas its actual simulation value is equal !

—3.0411 x 107% [rad]. The dependence of the . i-
ulation parameter ¢ on time is shown in Figure



beam by internal actuators are derived. Finally, a
control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between defor-
mations and rotations of deformable bodies is given
by Shapere and Wilczek (8]. Reyhanoglu and Me-
('lamroch [7] have developed a framework for reorien-
tation of multibody systems in space. [n this paper,
we have used the framework developed by Shapere
and Wilczek for the specific problem of reorientation
of a free—free beam in space; our results represent. in
a certain sense. the limiting case of the mu tibody re-
sults obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Angle rad

Although our study in this paper has been concerned
with the ideal case of reorientation of a free—free beam
in space. we note that the same ideas are applicable

\

o s o s s G s u s to reorientation of a wide class of deformable space
‘ structures, using only actuators embedded into the
Time sec structure. In this sense, smart structures technology

can be used to accomplish a variety of efficient reorni-

Fig 2. Asymptotic Reorientation Maneuver entation maneuvers for space structures.
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